- 1. When $(1 + ax)^n$ is expanded as a series in ascending powers of x, the coefficients of x and x^2 are -6 and 27 respectively.
 - (a) Find the value of *a* and the value of *n*.
 - (b) Find the coefficient of x^3 .
 - (c) State the set of values of *x* for which the expansion is valid.

(1) (Total 8 marks)

(5)

(2)

1. (a)
$$na = -6$$
 $\frac{n(n-1)}{2}a^2 = 27$ B1, B1
Attempts solution by eliminating variable e.g. $\frac{n(n-1)36}{n^2} = 54$

or
$$-\frac{6}{a}(-\frac{6}{a}-1)a^2 = 54$$
 M1
 $n = -2, a = 3$ A1, A1 5

(b)
$$\frac{(-2)(-3)(-4)3^3}{6} = -108$$
 M1 A1 2

for M1 allow a instead of a^3

(c)
$$|x| < \frac{1}{3}$$
 or $-\frac{1}{3} < x < \frac{1}{3}$
f.t. on $\frac{1}{a}$
B1 f.t. 1

[8]

1. The methods for finding binomial coefficients were well known and most candidates answered this question well. The most common errors were to include *a* rather than a^2 in the coefficient of x^2 . There was some confusion about whether to include the power of *x* in the coefficient, but some followed earlier erroneous statements by a recovery later. Part (c) proved to be a discriminator with many candidates not attempting to give the range of validity.